
1 of 4

Detecting Adaptive Inverse Models in the Central Nervous System
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Abstract—This study aimed to find evidence for the formation of
an internal inverse model of a novel visuomotor relationship for
feedforward control in the brain.  An experiment was carried
out involving 20 normal adult subjects who performed a pursuit
random tracking task with a steering wheel for input.  During
learning, the response cursor was periodically blanked,
removing all feedback about the external system (i.e., about the
relationship between hand motion and response cursor motion).
Results showed a transfer of learning from the unblanked runs
to the blanked runs for a static nonlinear system (linear trend
RMS error F(1,19) = 5.05, p = .037) thereby demonstrating
adaptive feedforward control in the nervous system. This result
provides the strongest evidence to date that the brain
adaptively tunes inverse models of external controlled
systems during motor learning.    No such transfer was
observed for a dynamic linear system, indicating a dominant
adaptive feedback control component.  Results are consistent
with inverse modeling and suggest a combination of
feedforward and feedback adaptive control in the brain.
Keywords—Internal model, motor learning, adaptive inverse
control, motor control, pursuit tracking.

I. INTRODUCTION

URRENT theories of human voluntary motor control
typically hypothesize that the brain employs adaptive

internal models of controlled processes [1-4].  These internal
models are used to implement a complex transformation from
desired movement trajectory to the corresponding set of
efferent motor commands [5, 6].  There are two classes of
internal model: forward models and inverse models [7].
Forward models use efference copies of outgoing motor
commands to predict the sensory consequences of a
movement, while inverse models convert desired sensory
consequences into motor commands.  Both forward and
inverse models capture aspects of the kinematic and dynamic
behavior of the environment external to the brain [8].

A motor control system employing an internal model may
be categorized as implementing some combination of
feedforward and feedback control, depending on the way it
utilizes sensory feedback.  Feedforward systems typically
employ inverse models to effect a desired response, whereas
feedback systems often employ forward models to overcome
sensorimotor delays [9, 10].  The contribution of each in the
human motor control system remains unclear.  Adaptive
feedback and feedforward control structures usually work in
combination in modern motor control hypotheses [11-13] .

The primary aim of this study was to look for evidence of
inverse model formation by examining the characteristics of

feedforward adaptation in the human brain.  Beyond this, the
study aimed to elucidate the relative extent of the
feedforward and feedback control contributions.  To achieve
this, visual feedback was withheld during learning of a
pursuit tracking task. By blanking the response cursor it is
possible to completely eliminate feedback of an external
tracking system.

Response blanking in a pursuit tracking task offers the
opportunity to observe the effect of systematically removing
an input signal that is otherwise continuously available.  This
technique can be used to show adaptive feedforward control
in action in the motor system.

When feedback is available, feedforward and feedback
adaptive controllers are difficult to distinguish.  Both classes
of controller use feedback as input for their adaptive
processes and consequently exhibit improved performance
over time.

In an adaptive feedforward controller, feedback is used to
tune an adaptive element such as an inverse model (see Fig.
1a).  This model is still available for use when feedback is
removed.  The action of the controller does not depend on
feedback, so withholding it simply suspends the adaptation.
Performance otherwise remains unaffected.  During normal
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Fig. 1.  (a) Adaptive feedforward controller.  (b) Adaptive feedback controller
(representative structure). (c) Possible parallel combination of adaptive
feedback and feedforward control. Dotted arrows indicate adaptation.
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operation, the model is tuned and controller performance
gradually improves.  A similar gradual improvement should
therefore be evident in the feedback-free performance of the
controller when deprived of feedback periodically during
learning.

 Assuming adaptation is temporarily halted when
feedback is removed, a plot of temporal variation in
performance with feedback (unblanked performance), and
corresponding performance without feedback (blanked
performance), can then be constructed.  If all the unblanked
learning is indeed captured in an inverse model (as predicted
for ideal adaptive inverse control) then a direct proportional
improvement in blanked performance will be evident (Fig.
2a).

An adaptive feedback controller (Fig. 1b) will also
gradually improve its performance when feedback is
available.  When feedback is removed, however, an
inappropriate control effort is produced because a feedback
controller depends on a continuously available feedback
signal.  In a plot comparing ideal unblanked and blanked
performance a feedback controller shows no performance
improvement when blanked (Fig. 2b).

If both feedforward and feedback adaptive elements are
present in the controller (Fig. 1c), the results would show
some (unequal) improvement in blanked performance (Fig.
2c).  Fig. 1c shows a parallel combination of adaptive
elements but a series combination is also possible and does
not alter the interpretation of results.  Assuming all blanked
improvement is due to the action of an adaptive feedforward
component, the relative contribution of each control
component can be estimated.  Note that it is also possible for
a combination controller to exhibit no improvement in
unblanked performance while showing strong improvement
in blanked performance, since the feedforward component
can learn from superior feedback behavior [12].

Feedback blanking, therefore, gives us a method both for
detecting adaptive feedforward control in the motor control
system and for judging the extent of the contribution of each
mode of control.

II. METHODOLOGY

Subjects were trained on a pursuit tracking task with
visual feedback for a short interval, during which they
partially learned to control the system.  Feedback was then
removed by blanking the response cursor.  This training and
blanking cycle was repeated several times until no further
unblanked learning was evident.

The performance of the subjects in each interval was then
assessed.  Improvement in blanked performance was
interpreted as adaptive feedforward learning and, therefore,
as evidence for the formation of an adaptive inverse model.

A. Subjects

Twenty subjects (13 male and 7 female) with no history
of significant neurological or musculoskeletal disorder
participated in the study.  All subjects passed a standard
visual acuity test prior to beginning the experiment, which
confirmed their ability to resolve 1 pixel (0.31 mm at 130
cm) on the screen.  The ages of the subjects ranged between
20 and 56 years (median 29.5 years) and the group included 3
left-handed individuals.  The subjects were randomly divided
into two equal sub-groups labeled ‘A’ and ‘B’, each of which
learned to control a different system.

B. Apparatus

The apparatus included a PC with two color monitors:
one displaying test stimuli for the subject and the other used
by the assessor for task generation and analysis.  All tests
were run and analyzed with the program SMTests [14].
Subjects were seated in front of their monitor (312 x 234
mm) with an eye-to-screen distance of approximately 130
cm.  All of the visuomotor tests were one-dimensional and
employed a steering wheel (395 mm diameter) as the
subjects' output sensor.  Rotation of the wheel moved an
arrow horizontally on the screen (see Fig. 3).

Both the screen response and the motor output response
were recorded for analysis.  Data was sampled at 60 Hz —
the screen update rate — which is well above the Nyquist
sampling frequency.

C. External Systems

Group A controlled a linear dynamic external system.
The dynamics were produced by passing the motor response
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through an IIR filter: a 3rd order Chebyshev Type I low-pass
filter with cutoff frequency of 3 Hz.

Group B was required to learn a static nonlinear system.
The system was a cubic function of input angle, scaled to
provide a challenging variation in gain while remaining
controllable.  The function was displaced from center to
increase the difficulty of the task by avoiding symmetry.

D. Target

The target signal comprised two consecutive sections as
follows:

1) Unblanked Training Signal: 68 s of a pseudo-random
waveform generated from superposition of 50 sinusoids of
equal amplitude and equally spaced in frequency with
random phase from 0.007 Hz up to 0.6 Hz, 75% full scale
deflection.  The random nature of the signal ensured that the
dynamic controlled systems were excited sufficiently to
allow the subject to maximally learn their characteristics.

2) Blanked Assessment Signal:  Identical to the first 28 s
of the training signal except for removal of feedback to the
subject by turning off the response arrow.

The two sections were combined and separated by a 7-s
interval where the target returned to the center of the screen.
All three sections combined to form a single continuous
103-s target signal, which was used for all runs in the
experiment.  The subject was also presented with an 8-s
preview of the target to eliminate the need to predict the
target signal and, hence, minimize a possible confounding
source of learning.

III. EXPERIMENTAL PROCEDURE

The experiment  comprised 25 consecutive tracking runs,
each of 103-s duration (i.e., the length of the target signal).
For each run the following procedure was followed:
1. The investigator positioned the screen pointer exactly on

top of the target thereby preventing the subject from
gaining knowledge of the system prior to the run.

2. The subject was asked to hold the wheel at the marked
position (top-center) with their dominant hand.

3. The subject was asked to ‘keep the point of the arrow on
the line as accurately as possible’.

4. The subject was told that the arrow would disappear late
in the run and that they were required to continue the
task by estimating the position of the arrow.

5. When the subject was ready, the investigator started the
run.

6. On completing the run, the subject was told their mean
absolute error (MAE) score for the unblanked section of
the run (as an incentive to improve their performance).

7. The subject was then given a minimum 20-s rest (to
prevent fatigue) before commencing the next run.  A 5-
min rest was given following the 10th run.

The total time for a complete session averaged 70 min.
 All subjects were initially asked to control a simple zero-

order external system (i.e., wheel angle proportional to
response pointer position).  These practice sessions were
intended to allow the subjects to learn as much about the

target and tracking system as possible.  This facilitates the
assumption made later in analysis that only the external
system was learned in the following runs.

Ten runs of the zero-order task were performed, after
which learning was deemed to have essentially plateaued.  At
this point the stochastic characteristics of the target signal,
the kinematic and dynamic properties of the steering wheel,
and the wheel-to-display relationship are considered to have
been maximally learned.

The subjects were then asked to control a new visuomotor
relationship, implemented by altering the characteristics of
the external system.  The specific external system they were
to control depended on which group they belonged to.

Both groups were required to train on their new external
system for 15 runs.  This duration was selected to be long
enough to characterize any learning trend but not so long as
to introduce noticeable fatigue.

IV. RESULTS

A. RMS Error

The linear trend analysis of RMS-error results are
summarized in Table I.  A significant linear trend of
reduction in RMS error was observed in both the unblanked
and blanked practice runs (p < .001).  The unblanked and
blanked runs showed unequal reduction in mean RMS error
from the first run to last run (33% improvement unblanked
vs. 18% improvement blanked).

The unblanked practice runs showed no significant linear
trend over runs 6 to 10 (F(1, 19) = 1.40, p = .25), suggesting
that the learning effect was confined to the first half of the
practice runs and supporting the assumption that learning had
essentially plateaued by the end of practice.  Similarly, no
linear trend was observed over runs 6 to 10 for the blanked
runs (F(1,19) = 3.26,  p = .087).

Group A showed the strongest learning in the unblanked
section (54% reduction in mean RMS error) but, surprisingly,
exhibited no discernible learning trend in the blanked section.

Group B showed substantial improvement in the
unblanked section, although to a lesser degree than that
observed for Group A (Fig. 4).  However, in contrast to
Group A, performance was seen to improve with a significant
linear trend during the blanked sessions (p = .037, see Table
I).  Group B did not show a proportional reduction in mean
RMS error from the first run to last run in the blanked and
unblanked responses (35% improvement unblanked vs 17%
improvement blanked).  This difference suggests a feedback
control component for Group B.

TABLE I. LINEAR TREND ANALYSIS FOR RMS ERROR

Group Unblanked Runs (log transform) Blanked Runs

Effect Error Effect Error

df MS df MS F p df MS df MS F p

Practice 1 0.762 19 0.006 137.3 0.000 *** 1 14.16 19 0.679 20.8 0.000

A 1 0.923 18 0.004 239.6 0.000 *** 1 23.6 18 767.8 0.0 0.862

B 1 0.246 18 0.004 64.0 0.000 *** 1 3879 18 767.9 5.1 0.037

p  < .05 = *, p  < 0.01 = **, p < 0.001 = ***, A = Dynamic Linear, B = Static Nonlinear
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B. Spectral Analysis

An error spectral analysis was carried out to confirm that
the RMS error results were not biased by low frequency
drift.  The analysis confirmed all important RMS error
results. For the blanked runs Group A showed no significant
learning trend at any frequency while Group B showed
learning from 0–0.3 Hz, p < .05.

V. DISCUSSION

The finding of a reduction in RMS error over the blanked
runs for Group B is consistent with adaptive feedforward
control of a static nonlinear external system.  Analysis of the
error spectra confirmed this result, with learning trends in the
lower half of the target bandwidth. This result provides the
strongest evidence to date that the brain adaptively tunes
inverse models of external controlled systems during motor
learning.  Conversely, the data did not reveal the simple
learning transfer from unblanked to blanked runs that would
be expected for a pure adaptive inverse controller, hence
suggesting the presence of an adaptive feedback control
contribution.

No blanked performance improvement was observed for
the dynamic linear external system,  in RMS error or in the
error spectral analysis, despite strong improvement in both
during the unblanked runs.  This indicates the importance of

adaptive feedback in the control of difficult dynamic external
systems.
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Fig. 4.  Mean RMS error scores.  Error bars show standard deviation.
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